Category Archives: Technology

Advanced Sourcing Today — No Gen-AI Needed!

Back in late 2018 and early 2019, before the GENizah Artificial Idiocy craze began, the doctor did a sequence of AI Series (totalling 22 articles) on Spend Matters on AI in X Today, Tomorrow, and The Day After Tomorrow for Procurement, Sourcing, Sourcing Optimization, Supplier Discovery, and Supplier Management. All of which was implemented, about to be implemented, capable of being implemented, and most definitely not doable with, Gen-AI.

To make it abundantly clear that you don’t need Gen-AI for any advanced enterprise back-office (fin)tech, and that, in fact, you should never even consider it for advanced tech in these categories (because it cannot reason, cannot guarantee consistency, and confidence on the quality of its outputs can’t even be measured), we’re going to talk about all the advanced features enabled by Assisted and Augmented Intelligence that were (about to be) in development five years ago and are now available in leading best of-breed systems. And we’re continuing with Sourcing.

Unlike prior series, we’re identifying the sound, ML/AI technologies that are, or can, be used to implement the advanced capabilities that are currently found, or will soon be found, in Source to Pay technologies that are truly AI-enhanced. (Which, FYI, may not match one-to-one with what the doctor chronicled five years ago because, like time, tech marches on.)

Today we continue with AI-Enhanced Sourcing that was in development “yesterday” when we wrote our first series five years ago but is now available in mature best of breed platforms for your Sourcing success. (This article sort of corresponds with AI in Sourcing Tomorrow Part I and AI in Sourcing Tomorrow Part II that were published in January, 2019 on Spend Matters.)

TODAY

Event-Based Category Alighnment

As per our Procurement series, a good AI based platform continuously analyzes (i.e. re-runs an analysis on a monthly basis) every product or service for inclusion against every organizational category and comes up with the most logical mix for the procurement organization based on likeness, current supply-base, spend-mix, and other existing parameters.

However, when it comes time for sourcing, the category should be appropriate for a sourcing event. This depends on volume, available supply base, and the category strategy (see the next item).

When it comes to sourcing, the AI will look at not only the product specifications, but also ensure there is a sufficiently large supply-base, with supply availability, spend-mix, and price trends. It will do this based on key material analysis (to identify additional suppliers in the market not yet supplying the organization), identification of market offers and volume disclosures from third party distributors vs. organizational need and overall percentages, analysis of spend vs. typical sourcing event sizes using simple (k-means) analysis, and price trends using basic curve fitting/projection. Nothing fancy.

Based upon the demand (volume), available supply base, supply availability, spend mix, price trends, and defacto templated sourcing strategy, the platform will recommend the event proceed using the standard strategy and template, proceed with modifications, or not proceed (alerting the buyer it’s not a good time, not a good event, or a new strategy is needed). It’s all traditional analytics, a smattering of machine learning, a sprinkling of pattern matching, tolerances, and confidence calculations. Nothing super fancy. The recommendation(s) will depend on a number of factors that revolve around the market conditions at the time. Current prices. Available supply base. Category dynamics in the consumer marketplace. Etc.

Category-Based Sourcing Strategy Identification

In our prior series, we indicated we’d have market-based sourcing strategy identification, and while that is in development, we’re not quite there yet. Market-based strategy identification requires a lot of data — market, supplier, marketplace, (anonymized) community intelligence, past event data, and past data from similar situations … the global marketplace has been so dynamic in recent years that we haven’t seen anything like it since pre-2000 … which was before the introduction of mass-market sourcing / procurement / modern supply chain software and we just don’t have the data.

That being said, for the majority of commodity categories, a number of leading firms have developed one or more standard sourcing strategies for the category and categorized the market conditions under which the strategies work. Modern sourcing platforms will run all the analytics against the specified demand ranges, supply vs. demand imbalance, historical price variances (since the last event), current market prices, check the thresholds, compute the match percentage and confidence, and then recommend go, go with changes/caution, don’t go — all using straight-forward trend analysis and mathematical calculations — no Gen-AI needed!

Real-Time Market vs. Response Monitoring and Automatic Pauses/Updates

As the responses come in, the application will not only track bids vs open market prices (and current prices), but compute the averages and if the bids coming in are worse than expected, alert the buyer. In a multi-round scenario, or RFQ-powered auction, the trends will be analyzed and if they are not as expected, the buyer will be alerted. In both cases, if something is off beyond a tolerance, which will adjust over time as buyer feedback on go-no go is collected, the event will automatically be paused if necessary. This just requires simple calculations against means and expectations. Good old math, a few business rules, and some workflow automation is all that is required.

Suggested Award Scenarios

Even if the platform doesn’t contain (true) strategic sourcing decision optimization [SSDO] (and see this recently updated article on Questions to Ask Your Optimization vendor for the requirements for a true SSDO solution), most modern platforms will recommend one or more award scenarios that take into account cost, business constraints, risk and carbon. It’s just a lot of combinatorial mathematical calculations and basic analytic verifications.

Carbon Impact Analysis

Using standard models for carbon production based on available data by industry, country, and when available, factory, modern platforms will use standard models and formulas to compute the carbon footprint by item, based on the supplier, the source location, and the location it is going to (and even take into account logistics based carbon production). It will do this for every item you’ve purchased, every item you’re considering, and show you the carbon impact of different award decisions vs. the status quo. No Gen-AI required! (Just a lot of formulae and data!)

SUMMARY

Now, we realize some of these descriptions, like yesterday’s, are also quite brief, but again, that’s because this is not entirely new tech, as the beginnings have been around for a few years, have been in development and discussed as “the future of” Sourcing tech before Gen-AI hit the scene, and all of these capabilities are pretty straight-forward to understand (especially with many of the fake-take and Gen-AI providers marketing these, or similar, claims, even though they are not entirely realizable within their platforms). And, if you want to dive deeper, the baseline requirements for most of these capabilities were described in depth in the doctor‘s January 2019 articles on Spend Matters. The primary purpose of this article, as with the last, was to explain how more sophisticated versions of traditional ML methodologies could be implemented in unison with human intelligence (HI!) to create smarter Sourcing applications that buyers could rely on with confidence.

Which Solution Provider Do You Want To Work With? NONE OF THE ABOVE!

In a recent LinkedIn Post, THE REVELATOR asked:

Under which category does your solution provider demo fall?

  1. 🤫 Selectively Stealth With A Reason
  2. 🎩 Smoke And Mirrors
  3. 🌟 Courageous Dreamers

And, more importantly, which one would you, as a practitioner, prefer to work with?

the doctor, who has reviewed over 500 solutions in our space over the last two decades (and interacted with considerably more vendors than that) answered for you:

  • 𝐍𝐎𝐍𝐄 𝐎𝐅 𝐓𝐇𝐄 𝐀𝐁𝐎𝐕𝐄!

a) Selectively Stealth vendors are either

  1. considerably overrating their solution against the market (usually due to lack of homework) or
  2. hiding their solution because they know there is absolutely positively nothing unique about their offering (which is NOT a bad thing if it is easier to use, quicker to implement, better supported, and cheaper than competitors, but if that was the case, why would they be stealth?)

b) Smoke and Mirrors are

  1. greatly overselling a significantly underperforming solution (and usually trying to gouge you with a high price tag while they are at it)

c) Courageous Dreamers are

  1. selling you on a vision they may realize someday, but are usually doing so while trying to sell a woefully inadequate solution (or, a solution with one new great capability but none of the critical baseline functionality)

So what type of vendor do you want?

e. Open, Honest, and Informed

Even if they don’t have anything explicitly unique.

As SI has noted before, a good vendor is one who will be focussed on

  • a particular market size
  • one or more related industries
  • a subset of functionality where the founders / core team have strength

In addition, it will consult with organizations in that niche, analysts and consultants who serve that niche, and third party experts to get feedback during design, development, initial implementation, etc. and take all that into account in order to design a solution that will solve the problems of the aforementioned identified market niche in a manner that will be usable, and used by, the market they are going after.

It’s not about who has the most features, who has the best bells and whistles, who has the coolest sounding tech under the hood, …

IT IS ABOUT WHAT SOLUTION WILL WORK FOR YOU!

It’s the solution that will solve the 80% of your problems, that will contain all the functionality to do the tasks you do every day (not every quarter or every year), that will make those daily tasks more efficient and effective, that will be used in the majority (not the minority), that will be affordable for a business of your size, and generate an ROI.

And, sometimes the best solution is the NO-AI inside solution with nothing new, but the solution that was form fit for companies of your size in your industry, that streamlines your daily processes, that is easier to use than avoid, that solves the problems you wanted solved, and does so at a fraction of the price of the mega-suite that is just complete overkill with respect to what you are looking for.

Some of the vendors that received the best coverage here on SI are those that didn’t contain a single capability the doctor hadn’t seen ten (to one hundred) times before, but came from vendors who designed a solution for an underserved market niche, made it valuable for that market niche, and were completely honest about what they had and who they were selling to. That’s what the market needs.

AND THAT IS WHAT YOU NEED!

Want A Good Solution, Ask Vendors The Hardest Questions Off The Bat!

Even though they don’t always do so with their slimy sales and misleading marketing practices, be sure to keep it above the waist as you repeatedly hit them as hard and fast as you can. (You don’t want to dance around with a vendor unless you know they can take a few hits and are in it to win it, because once you start to dance they’ll duck and dodge until the end of time).

This post was inspired by THE REVELATOR who asked us What are the most important questions to ask a potential solution provider partner?

1) Can, and will, you show me (not tell me) live … preferably on use cases or data I give you on the spot?

I’ve said it before, and I’ll say it again: Dear Procurement Practitioner, when it comes to solution selection from today’s vendor, your mantra is Show Me, Don’t Tell Me! There’s too much hogwash out there today, buzzwords don’t solve problems, and when you dive into the marketing madness, you see there’s absolutely no value, or even core capability, in what’s being sold by many vendors.

You need solid solutions with substance, not glitzy fake-take UX, broken Gen-AI, or slack-like conversations that don’t do anything. You also need solutions that digitize and automate the 80% of Procurement / Sourcing / Supplier (Data) Management / etc. that you do day-in and day-out, week-in and week-out, month-in and month-out, and year-in and year-out and not the odd special case that comes up once a week, month, or year. And you definitely don’t need solutions that don’t fit your domain.

Moreover, you want relevant demos. If you’re buying janitorial and building maintenance supplies, you don’t want a demo on how the catalog makes it easy to buy sneakers and shoes. (FYI: I’m not being unnecessarily ridiculous here. I have been in demos where a primarily MRO buyer was demoing the top three platforms, and one showed them how to buy sneakers and shoes!) If you get such a ridiculous demo, you want to show that vendor the door as fast as possible because you have one of two situations: they didn’t do their homework on you (and don’t have a clue if their solution is appropriate), or their solution was built, and over customized, for one niche industry and will not easily support yours.

2) Once you show me the core use cases, can, and will, you explain the breadth of use cases you developed your solution for and how they are specific to my business?

You want someone who both understands what they are selling and how it might help your business. Any less and you might as well just roll the bones to select your solution provider. At the end of the day you need to understand the following:

  • there may be 666 logos on the mega map but there is no perfect solution; and nothing that will meet all of the requirements in your RFP
  • the best solution will meet the majority, and, more specifically, the requirements related to the tasks you do all the time, not the ones that you do once a quarter or once a year
  • the best solution for you will be one that comes close and comes from a vendor who both understands this and makes an effort to customize their solution for you in a manner that will achieve maximum results … from the first demo
  • the best solution provider will take the time to explain that which they don’t have time to demo, or can’t demo without your data; even the sales person will attempt it at a high level, and then bring in a product specialist for where more depth is needed

3) Once we tell you the extent of your solution we feel is appropriate, can you talk us through what the implementation and integration to our environment would require without bringing in a paid third party “expert” consultant? And how long will that take?

A great solution provider for you will be one that understands your needs, their platform, and what will need to be done in order to implement it for you, integrate it into your stack, and prepare it for you to extract the value they promise. They won’t need third party help to figure all this out and walk you through it. If a lot of integrations or data migrations are required, they, or you, may need to partner to get it done, but they should still know what’s required.

And, as we said in the introduction, while you should keep your rapid, one-two-three punch, above the belt until the vendor sales rep goes below in their tactics, you should also endeavour to hit ’em as hard as you can with that 1-2-3 combo. If they can’t take it, you want them knocked out before you waste any time on them, because any good vendor will be able to take them and come back with the best damn demo, details, and arguments as to why they are sure their solution will work for your problems, with concrete examples, in a very short timeframe. (And yes, odds are you could be unlucky and have to knock out the first 6 before you find that first 1/7 that is still there so solve problems. But the wait will be worth it.)

Advanced Sourcing Yesterday — No Gen-AI Needed!

Back in late 2018 and early 2019, before the GENizah Artificial Idiocy craze began, the doctor did a sequence of AI Series (totalling 22 articles) on Spend Matters on AI in X Today, Tomorrow, and The Day After Tomorrow for Procurement, Sourcing, Sourcing Optimization, Supplier Discovery, and Supplier Management. All of which was implemented, about to be implemented, capable of being implemented, and most definitely not doable with, Gen-AI.

To make it abundantly clear that you don’t need Gen-AI for any advanced enterprise back-office (fin)tech application, and that, in fact, you should never even consider it for advanced tech in these categories (because it cannot reason, cannot guarantee consistency, and confidence on the quality of its outputs can’t even be measured), we’re going to talk about all the advanced features enabled by Assisted and Augmented Intelligence (as we don’t really have true appercipient [cognitive] intelligence or autonomous intelligence, and we’d need at least autonomous intelligence to really call a system artificially intelligent — the doctor described the levels in a 2020 Spend Matters article on how Artificial intelligence levels show AI is not created equal. Do you know what the vendor is selling?) that have been available for years (if you looked for, and found, the right best-of-breed systems [many of which are the hidden gems in the Mega Map]). And we’re going to continue with Sourcing. (Find our series on Advanced Procurement — No Gen-AI Needed! Yesterday, Today, and Tomorrow at the following links.)

Unlike prior series, we’re going to mention some of the traditional, sound, ML/AI technologies that are, or can, be used to implement the advanced capabilities that are currently found, or will soon be found, in Source-to-Pay technologies that are truly AI-enhanced. (Which, FYI, might not match one-to-one with what the doctor chronicled five years ago because, like time, tech marches on.)

Today we start with AI-Enhanced Sourcing that was available yesterday (and, in fact, for at least the past 5 years if you go back and read the doctor‘s original series, which will provide a lot more detail on each capability we’re discussing. (This article sort of corresponds with AI in Sourcing Today that was published in January, 2019 on Spend Matters.)

YESTERDAY

Workflow / Project Automation

Once a sourcing project is defined, which typically consists of identifying the required products and demand, the critical requirements of the supplier pool, the RFI, the RFP/Q, the evaluation criteria and weightings, the award rules, and the initial award offers, the entire project is easily automated using rules-based automation. Best-of-breed platforms will integrate fuzzy matching to identify additional suppliers who provide similar SKUs, RFI/P/Q templates which will automatically be pulled in and modified based upon the particular items in the category and organizational risk/compliance rules using semantic characteristic matching (traditional NLP will be fine), and built in “cherry-pick” algorithms that will compute standard award scenarios (lowest price, max 3 suppliers, geo-split, etc.) and create a default recommendation — which only requires math and traditional analytics.

Auto-Fill

For the better part of the past decade, the best platform auto-fills not just successive rounds, but auto-fills / pre-populates all of the supplier, item, and RFI data based on available information in all integrated systems — be it from past events, the supplier master, the forecasting platform, or market(place) data (for products).

This just requires rules-based automation and workflow with reg-ex pattern matching, and simple trend analysis and market data matching for price / demand population. Easy peasy on the tech ladder.

Outlier Identification

As we wrote years ago, it only takes one bad data element to make a good sourcing process go bad. Just one. One bid too low that takes a buyer down the wrong path. One risk rating too high that steers a buyer away from what would be their best supplier. One demand error that steers the best supplier away. But all of these “outliers” can be easily detected with traditional mathematical clustering algorithms used as the back-bone of machine learning — k-means, nearest neighbour, etc. — and identifying any values too far off the norm and then alerting the buyer to (have the supplier) correct them.

Rule-Based Auto-Award Identification

For simple scenarios where it’s always lowest cost, simple mathematical calculations can identify the supplier-item awards, and these can be limited to a max # of suppliers as then it’s just computing some combinations. No “AI” required.

SUMMARY

Now, we realize this was very brief, but again, that’s because this is not new tech, that was available long before Gen-AI, which should be native in the majority (if not the entirety) to any true best-of-breed Sourcing platform, that is easy to understand — and that was described in detail in the doctor‘s 2019 article for those who wish to dive deeper. The whole point was to explain how traditional ML methods enable all of this, with ease, it just takes human intelligence (HI!) to define and code it.

Advanced Procurement Tomorrow — No Gen-AI Needed!

Back in late 2018 and early 2019, before the GENizah Artificial Idiocy craze began, the doctor did a sequence of AI Series (totalling 22 articles) on Spend Matters on AI in X Today, Tomorrow, and The Day After Tomorrow for Procurement, Sourcing, Sourcing Optimization, Supplier Discovery, and Supplier Management. All of which was implemented, about to be implemented, capable of being implemented, and most definitely not doable with, Gen-AI.

To make it abundantly clear that you don’t need Gen-AI for any advanced back-office (fin)tech, and that, in fact, you should never even consider it for advanced tech in these categories (because it cannot reason, cannot guarantee consistency, and confidence on the quality of its outputs can’t even measured), we’re going to talk about all the advanced features enabled by Assisted and Augmented Intelligence that are (or soon will be) in development (now) and you will see in leading best of breed platforms over the next few years.

Unlike prior series, we’re identifying the sound, ML/AI technologies that are, or can, be used to implement the advanced capabilities that are currently emerging, and will soon be found, in Source to Pay technologies that are truly AI-enhanced. (Which, FYI, may not match one-to-one with what the doctor chronicled five years ago because, like time, tech marches on.)

Today we continue with AI-Enhanced Procurement that is in development “today” (and expected to be in development by now when the first series was penned five years ago) and will soon be a staple in best of breed platforms. (This article sort of corresponds with AI in Procurement The Day After Tomorrow that was published in November, 2018 on Spend Matters.)

TOMORROW

AUTOMATIC CATEGORY IDENTIFICATION

Building on the above, there’s no reason it can’t look at common product / service characteristics from BOMs (bills of materials) and descriptions, find commonalities, and suggest new sourcing/procurement categories that would maximize opportunity and leverage. This is just building on last-gen tech with more encoded human intelligence (HI!), RPA, and (gasp!) math. This is especially useful for identifying when tail-spend should go to 3-bids-and-a-buy tactical sourcing and when mid-tier tactical categories are large enough for full blown strategic sourcing with strategy identification, in-depth market research, multi-round bids and negotiations, etc.

AUTOMATIC PROCUREMENT METHOD IDENTIFICATION

When we are talking about mid-tier tactical sourcing, when a category (currently in the tail) goes beyond a simple catalog / e-comm-like site buy, determining whether it should be a 3-bids-and-a-buy RFQ, auction, or negotiation with an incumbent (whom you have a relationship with in another category or who is currently getting most of the business off-contract) can be automated based on an assessment of current market conditions (supply vs. demand, price trends, category risk, etc.) and encoded Human Intelligence (HI!) on best-practice (and the conditions that tilt one method in the favour of another baed on past savings against similar market conditions). While it won’t be perfect, it will better than most buyers in most organizations will be able to do without deep category expertise and/or a lot of experience in strategy selection and implementation — and more than good enough for an average mid-market enterprise for the majority of their mid-tier spend.

ELIMINATION OF UNMANAGED TAIL SPEND

Tail Spend can be 30% to 40% of spend in some organizations, and overspend (as determined by a variance analysis, market prices across marketplaces, and/or average savings from a 3-bids-and-a-buy RFP or even just a bulk discount on standard catalog pricing) in the 15% to 30% range.

(That’s why so many laggards are getting bamboozled by the new generation of fake-take [better known as intake] procurement applications that make it easy to process requisitions and do one-time buys, because they often see a 10% savings on spend out of the gate and think they are doing fantastic, even when they aren’t. First of all, they are only getting market-price [because they aren’t doing real procurement, which requires a basic level of strategy, and definitely not doing strategic sourcing], which means they are leaving money on the table. Secondly, by not identifying items that should be bundled across requisitions from the week OR managed as MRO / commodity inventory [which can be managed automatically], they are wasting time (and thus money) processing essentially the same requisition over and over [and over]. And so on.)

However, given that we have made great advances in trend analysis, community intelligence, market price intelligence, demand management, market dynamics classification, etc., there’s no reason that, for any tail spend item, the system can’t, with high probability, identify the appropriate methodology for any requisition, which, for tail spend, should include:

  • fulfill from inventory (and auto manage / order the inventory)
  • fulfill from catalog (from contract / preferred suppliers)
  • combine requisitions and fulfill via RFQ
  • combine requisitions and fulfill via e-Auction
  • fulfill as standalone RFQ
  • fulfill as standalone e-Auction
  • promote to a tactical sourcing / strategic procurement category

PERFORMANCE IMPROVEMENT

Procurement is always overworked and under-resourced from a people, capital, and technological perspective, so performance is critical. A great system will increase performance not just along the “cost savings” dimension (as that’s a given with Procurement, whoever said “I have been tasked to spend more” in Procurement), but also along the time, risk, and sustainability measurements.

A great system will monitor utilization and not only allow itself to be configured to minimize steps and effort for everyday tasks through built in configuration capabilities in the dashboards, workflows, rules, etc., but will suggest to the admin changes to configuration, process, or policy over time as the metrics indicate that changes would reduce process time. Process analysis systems already exist, it’s just a matter of integrating them into procurement systems and integrating the analytics necessary to do the suggestions and linking them to the workflow.

But procurement systems aren’t limited to identifying savings opportunities across money and time, they can also identify opportunity across risk if appropriate risk metrics are incorporated (and suggest strategies, suppliers, or products with lower risk) using trend and comparison analytics.

Similarly, they can integrate carbon models and carbon data and identify the (expected) carbon cost of every product or service being considered (depending on whether the data comes from an industry data base, country database, supplier measurement, or third party auditor, will determine how accurate the carbon value is), and identify suppliers or products that would reduce carbon, as well as the cost decrease and/or risk increase of any carbon improvements.

SUMMARY

Now, we realize some of these descriptions are dense, but that’s because our primary goal is to demonstrate that one can use the more advanced ML technologies that already exist, harmonized with market and corporate data, to create even smarter Procurement applications than most people (and last generation suites) realize, without any need (or use) for Gen-AI, that the organization can rely upon to reduce time, tactical data processing, spend, and risk while increasing output and overall organizational performance. It just requires smart vendors who hire very smart people who use their human intelligence (HI!) to full potential to create brilliant Procurement applications that buyers can rely on with confidence no matter what category or organization size, always knowing that the application will know when a human has to be involved, and why!