The non-stop hype coming straight from the A.S.S.H.O.L.E. is continuing to cause market confusion and utter chaos.
Why?
Gen-AI is on the concerns list because it’s the tech-du-jour. Five years ago it was (advanced) (predictive) analytics. Ten years ago it was the fluffy magic cloud. Fifteen years ago it was SaaS. Twenty years ago it was the World Wide Web. And so on.
But not one of these technologies, all sold as the panacea that would solve all your woes, solved your problems because all of the promised capabilities were just silicon snake oil, and Gen-AI is no different. The hype cycle may be slowly coming to an end, but it will quickly be replaced by Some-BS-World-Model-Adjacent-Agentic-AGI that will be sold as the AI that finally solves all your problems but, in reality, still won’t be anything close (but, if narrowly applied in the right domains where the client has sufficient data might actually work quite well … but won’t do anything reliably in general and the failure rate will still be 80%+, which is the average tech failure rate for the last 25 years … and SI knows, because the doctor has been following tech failure for over 25 years).
Not only is Gen-AI no different than the previously over-hyped tech-du-jour offerings of the last two decades, but with a failure rate of 94%+ (McKinsey, and 95%, MIT), it’s arguably the worst yet! And, as per our predictions, it’s not going to get much better. If the failure rate gets as low as 90% this year, it will be the closest thing to a tech miracle that we can conceivably get. Like every other tech before, Gen-AI will only solve a relatively small set of problems.
Just like
- The Web only solves remote connectivity
- SaaS only allows solutions to be built in the cloud
- Analytics only provides insight where you have the right, sufficient, data and the right algorithms to get useful insights
- Gen-AI is just a next-gen probabilistic deep neural net that often does
- better semantic processing
- better search
- better summarization
- better potential pattern identification (but only if you can learn how to prompt it to do so and only if you have it trained on the right data subsets, not the entire web which is now more than half AI slop)
but does so at the additional expense of
- hallucinations
- intentional falsehoods
- thoughtless reinforcement
- cognitive atrophy
- etc. etc. etc.
As a result of this, as far as I’m concerned, the AI bubble can’t burst fast enough! It’s all hype, buzzwords, and hallucinatory bullcr@p. And, frankly, any (claims of) agentic AI built on it are fraudulent. (After all, we’ve already seen what happens when you let AI run your vending machine. The last thing you want is it buying for you!)
Especially when, on top of hallucinations, we have plenty of examples of:
- bad math
- decreased code/application security
- fraud
- blackmail
- extremist views
- dependence & cognitive reduction
- deadly diets
- suicide
- hit lists
- murder
- lawsuits
We’ve said many times that LLMs are not helpful and ChatGPT (in particular) is not your friend, that if you have a headache you definitely shouldn’t take an aspirin or query an LLM, and that, frankly, you’d be better off with a drunken plagiarist intern because that’s the best case result from an LLM. Most are worse.
Frankly, it’s time to stop falling for the artificial intimidation, fight back against AI Slop, and remember cutting edge tech is NOT defined by the C-Suite or the incessant marketing from the A.S.S.H.O.L.E. that is targeting the C-Suite on a daily basis!
Impact Potential
Huge! Companies will continue to waste millions individually and collectively hundreds of billions on the next generation tech that, with a probability of 90%+, will generate a (huge) loss.
Major Challenges/Risks
The major challenge is not with the tech, it’s helping companies realize that they’re probably not ready for the tech. The reason that tech failure rate has averaged 80%+ over the last twenty years is that consultancies keep promoting, vendors keep selling, and companies keep buying advanced leading edge tech they are not ready for. The reality is that unless you are in the top 10% of buyers of tech, already on the latest tech, and have sufficiently mastered that tech, you are not ready for Gen-AI (which should not have left the research lab when it did and, in all honesty, should still be in the research lab since it still only works in a small number of well defined scenarios and is so bad that every year a couple of AI founders turn away from AI because of it — with Yann Lecun walking away from Meta and LLMs and reverting to world models, that can be thought of as next generation (Semantic) Web 3.0 models augmented with [deterministic and dependable] automated reasoning and, hopefully, very little dependence on hallucinatory probabilistic models [beyond what’s needed to semantically parse an input].)
The only place you should be using Gen-AI is where a non Gen-AI solution doesn’t exist, the task is well defined, and you can build a custom in-house model that works reasonably well in the majority of situations and that can be implemented with guard-rails. But that’s something you can only do if you have a high TQ (Technical Quotient) and have mastered last generation tech. Right now, you should be tripling down on E-MDMA and Advanced Analytics as this tech has improved to the point where it can allow you to optimize processes, spending, schedules, and anything else you can think of with high accuracy and low cost with basic analytics skills as so much comes pre-packaged and the visualizations and drill-downs are much more intuitive than they were a decade ago. Plus, these firms have figured out how to use multiple forms of AI to classify your data with high accuracy and minimize the work required by you to fix errors and reclassify to your preferred schemas. It’s literally drag and drop as compared to the complex rule-building that used to be required. In addition, you should be looking for the mature A-RPA (Advanced Robotic Process Automation) solutions that are highly customizeable and capable of “self-learning” such that the parameters that trigger exceptions will adjust over time based upon user acceptance or rejection of recommended actions and the platform will automatically encode new processing rules based upon the users’ actions on an exception. Much better than Artificial Iiocy that decides everything based on hallucinations.
THE FINAL WORD
If you haven’t mastered all of the tech that existed before Gen-AI, including classical machine learning AI that has been studied, optimized, and proven to work for over a decade, you’re not ready for Gen-AI, should treat it like the drug it is (as it does more damage to your cognitive abilities than many illegal drugs), and JUST SAY NO!
