By now you probably get the point that most claims of AI are just Applied Indirection to the lack of new technology being offered by the platform which is wrapping up old tech in a new UX with a little bit of RPA and, hopefully, better canned reporting and analytics — but certainly not intelligence by any stretch of the imagination. (When you get right down to it, the bean dealer who sold the beans to Jack Spriggins was more honest when he said they were magic because the fact that seeds can sprout and grow into monstrously sized plants and trees over time that seemingly reach the clouds [and do if they grow on mountain tops] is pretty magical when you think about it.)
We also gave you a bit of a sniff test yesterday when we told you to think about it because common sense tells us there is no true artificial intelligence (autonomous or otherwise), that true cases of augmented intelligence technology (that can come up with what human experts can’t) is rare, but that assisted technology is more likely (but, again, it has to come up with what we would, not just automate dumb tasks — that’s just RPA [robotic process automation] driven by a rules-based workflow).
Since most of the “AI” that is being sold today revolves around analytics, in order to help you conduct better sniff tests (since if you can’t smell what The Rock is cooking, you know there’s nothing there), we’re going to discuss the five levels of analytics (and tell you right now there is no hint of AI even in it’s weakest form unless the analytics offered is at least level 4).
The first two levels are:
Level 1: Descriptive
This is classical reporting and the level of analytics that the majority of (leading) solutions offer. Even it contains a bundled report builder, if all that report builder does is let you produce custom reports on base and derived fields, that’s just same-old same-old descriptive reporting in a new packaging.
Level 2: Classificative
This is what most modern spend analysis systems offer you — the ability to (auto) classify transactions to a taxonomy for reporting purposes in the bundled descriptive report builder. And while most will tell you this is AI, in most cases, it’s anything but. Most of these systems are just using classic clustering, classic neural networks that are trained in (semi) supervised mode, and, if they are slightly more advanced, fingerprint techniques that extract the seemingly most differentiated details (which are usually identified by a human during training) and use those details for classification purposes in a neural network or n-dimensional kernal machine. But, at the end of the day, the classification is done using 90’s statistical techniques. Humans have to select the algorithms, the data elements in the transactions the algorithms will focus on, train the algorithms, and then implement the algorithms to work on a subset of the data.
Come back tomorrow for a description of the next three levels (and whether or not there is even a hint of AI under the hood).