Daily Archives: March 20, 2024

The Best Way Procurement Chiefs Can Create a Solid Foundation to Capitalize on AI

As per our recent post on how I want to be Gen AI Free, the best way to capitalize on Gen-AI is to avoid it entirety. That being said, the last thing you should avoid is the acquisition of modern technology, including traditional ML-AI that has been tried and tested and proven to work extremely well in the right situation.

That being said, if you ignore the reference to Gen-AI, a recent article on Acceleration Economy on 5 Ways Procurement Chiefs Can Create a Solid Foundation had some good tips on how to go about adopting ML-AI with success.

The five foundations were quite appropriate.

1. Organize

A plan for

  1. exactly where the solution will be deployed,
  2. what use cases it will be deployed for,
  3. how valid use cases will be identified, and
  4. how the solution is expected to perform on them.

There’s no solution, even AI, that can do everything. Even limited to a domain, no AI will work for all situations that may arise. As a result, you need a methodology to identify the valid use cases and the invalid use cases and ensure that only the valid uses cases are processed. You also need to ensure you know the expected ranges of the answers that will be provided. Then you need to implement checks to ensure that no only are only valid situations processed but that only output in an expected range is accepted in any automated process, and if anything is outside the expected norms anywhere, a human with appropriate education and training is brought into the loop.

2. Create a Policy

No technology should be deployed in critical situations without a policy dictating valid, and invalid, use. Moreover, any technology definitely shouldn’t be used by people who aren’t trained in both the job they need to do and proper use of the tool. Even though most AI is not as dangerous as Gen-AI, any AI, if improperly used, can be dangerous. It’s critical to remember that computers cannot think, and only thunk on the data they are given (performing millions of calculations in the time it takes an average person to perform two). As such, the quality of output is limited both to the quality of data input and the knowledge built into the model used. Neither will be complete or perfect, and there will always be external factors not considered, which, even if normally not relevant, could be relevant — and only an educated and experienced human will know that. (Moreover, that human needs to be involved in the policy creation to ensure the technology is only used where, when, and how appropriate.)

3. Understand Your Platform(s) of Choice

Just like there are a plethora of Gen-AI applications, a lot of different vendors offer AI applications, and even if most are similar, not all are created equal. It’s important to understand the similarities and differences between them and select the one that is right for your business. (Consider the algorithms and models used, the extent of human validated training available, typical accuracy / results, and the vendor’s experience in your use case in particular when evaluating an AI solution.)

4. Practice

Introducing new tools requires process changes. Before introducing the tool, make sure you can execute the associated process changes, first by executing training exercises on the different types of output you might get and then, possibly by way of a third party who uses a tool on your behalf, using real inputs and associated outputs. While the AI may automate more of the process, it’s even more critical that you respond appropriately to parts of the process that cannot be automated or where the application throws an exception because the situation is not appropriate to either the use of AI or the use of the AI output. (And if you don’t get any exceptions, question the AI … it’s not likely not working right! And if you get too many exceptions, it’s not the right AI for you.)

5. ALWAYS Ask Yourself: “Does that Make Sense?”

Just like Gen-AI hallucinates, traditional AI, even tried-and-true AI that is highly predictable, will sometimes give wrong results. This will usually happen if bad data slips in, if the use case is on the boundary of expected use cases, or the external situation has changed considerably since the last time the use case arose. Thus, it’s always important to ask yourself if the output makes sense. For tried-and-true AI where the confidence is high, it will make sense the vast majority of the time, but there will still be the occasional exception. Human confirmation is, thus, always required!

With proper use, AI, unlike Gen-AI (which fails regularly and sometimes hallucinates so convincingly that even an expert has a hard time identifying false results), will give great results the majority of the time — so you should seek it out and implement it. Just also implement checks and balances to catch those rare situations it doesn’t and put a human in the loop when that happens. Because traditional use-cases are more constrained, and predictable, it’s a lot easier to identify and implement these checks and balances. So do it … and see great success!